A3.3B Long Division	Name
1. Graph a sketch of a polynomial with a degree of x^3 , that has zeros of -1, 4, and 2. Write an equation with a scale factor of 1 in x-intercept form.	2. Graph a sketch of a polynomial with a degree of 4, with zeros of 0, 3,3, & 5. Write an equation for this graph with a scale factor of -1 in x-intercept form.
End behavior: As $x \to -\infty$, $y \to $ as $x \to \infty$, $y \to $	End behavior: As $x \to -\infty$, $y \to $ as $x \to \infty$, $y \to $
3. Divide using LONG DIVISION: SHOW ALL WORK NEATLY. $(2x^3 - 1)/(2x + 4)$	4. Divide using LONG DIVISION: SHOW ALL WORK NEATLY. $(x^4 - 2x^3 + 3x^2 - 4x + 6)/(x^2 + 2x - 1)$
5. Divide using LONG DIVISION: SHOW ALL WORK NEATLY. $(x^4 - 3x^3 + 6x^2 - 3x + 5)/(x^2 + x)$	6. Divide: $\frac{x^{3}-3x+2x^{4}}{2x-3}$

7. Divide with long division:	8. Divide using Long Division:
$\frac{3x^3-5x^2+4x-2}{3x+1}$	$\frac{x^{6}+x^{4}+x^{2}+1}{x^{2}+1}$
9.WITHOUT A CALCULATOR, complete the table using the remainder theorem and or factoring, and then sketch the graph. $f(x) = x^3 + 3x^2 - 4x - 12$	10. Graph for 9 without a calculator.
11. Use Synthetic division to decide if the first polynomial is a factor of the second polynomial. If it is find the rest of the factors, and graph.	12. Factor to find all the zeros, then graph.
$x-2$; $x^3 + 3x - 4$	$P(x) = x^4 - 6x^2 + 8$

14. Factor to find all the zeros, then graph. $P(x) = 4x^3 + 5x^2 - 36x - 45$	15. If a polynomial has a degree of 5, complete the table below to write how many real and complex solutions are possible. Real Imaginary
16. Factor to find all the zeros, then graph. $P(x) = -2x^3 + 18x^2 - 28x$	17. Factor to find all the zeros. $f(x) = x^3 + 2x^2 - 5x - 10$
18. Factor to find all zeros. $f(x) = x^4 - 21x^2 - 100$	19. If it is given that a zero is at 4, find the remanding zeros. Write in factored form. $f(x) = 2x^3 - 15x^2 + 19x + 36$ ZEROS, Linear Factored Form $f(x) = (x)(x)(x)$
20. If it is given that a zero is at -2, find the remanding zeros. Write in factored form. $f(x) = x^3 - 8x^2 + 2x + 44$ $\overline{P(x)} = (x)(x)(x)$	