A3.3B Long Division	Name
1. Graph a sketch of a polynomial with a degree of x^{3}, that has zeros of $-1,4$, and 2 . Write an equation with a scale factor of 1 in x-intercept form. End behavior: As $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ \qquad as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$ \qquad	2. Graph a sketch of a polynomial with a degree of 4, with zeros of $0,3,3, \& 5$. Write an equation for this graph with a scale factor of -1 in x -intercept form. End behavior: As $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ \qquad as $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$ \qquad
3. Divide using LONG DIVISION: SHOW ALL WORK NEATLY. $\left(2 x^{3}-1\right) /(2 x+4)$	4. Divide using LONG DIVISION: SHOW ALL WORK NEATLY. $\left(x^{4}-2 x^{3}+3 x^{2}-4 x+6\right) /\left(x^{2}+2 x-1\right)$
5. Divide using LONG DIVISION: SHOW ALL WORK NEATLY. $\left(x^{4}-3 x^{3}+6 x^{2}-3 x+5\right) /\left(x^{2}+x\right)$	6. Divide: $\frac{x^{3}-3 x+2 x^{4}}{2 x-3}$

14. Factor to find all the zeros, then graph. $P(x)=4 x^{3}+5 x^{2}-36 x-45$	15. If a polynomial has a degree of 5 , complete the table below to write how many real and complex solutions are possible.
16. Factor to find all the zeros, then graph. $P(x)=-2 x^{3}+18 x^{2}-28 x$	17. Factor to find all the zeros. $f(x)=x^{3}+2 x^{2}-5 x-10$
18. Factor to find all zeros. $f(x)=x^{4}-21 x^{2}-100$	19. If it is given that a zero is at 4 , find the remanding zeros. Write in factored form. $f(x)=2 x^{3}-15 x^{2}+19 x+36$ ZEROS \qquad , \qquad , \qquad Linear Factored Form $f(x)=(x \quad)(x \quad)(x \quad)$
20. If it is given that a zero is at -2 , find the remanding zeros. Write in factored form. $f(x)=x^{3}-8 x^{2}+2 x+44$ $\overline{P(x)}=\overline{(x} \quad \overline{)(x}$)(x	

